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Abstract

Erosion and runoff have been observed to increase following fire. Land managers and 
Burned Area Emergency Rehabilitation (BAER) teams must be able to estimate these 
post-fire changes. Studies of post-fire erosion on burned watersheds show that the 
concentrations of sediment eroded from burned rangeland and forested hillslopes in the 
southwestern United States can be extremely high.  Since wildfire primarily impacts soils 
and vegetation cover on hillslopes, it is appropriate to assume that changes in hillslope 
conditions will result in changes in runoff peak, volume and sediment yield.  The AGWA 
(Automated Geospatial Watershed Assessment www.tucson.ars.ag.gov/agwa) hydrologic 
modeling tool employs both an empirical model (SWAT) and a more process-based 
model (KINEROS2).  In order to study how these models should be modified to provide 
land managers with a means to assess the impact of fire, the models were applied on two 
burned watersheds.  Analysis of data from the Marshall Gulch watershed near Tucson, 
Arizona, indicates that changes in runoff volume are small compared to changes in peak 
runoff. The application of the KINEROS2 model to burned conditions at the Starmer 
Canyon near Los Alamos, New Mexico shows a pattern of change over time that is 
consistent with watershed recovery.  Calibrated hillslope roughness values are consistent 
with independent estimates for roughness under bare conditions following the fire to 
roughness consistent with forested conditions three years later.  The modeling also 
indicated that increasing hillslope roughness over time accounts for much of the change 
in runoff response. 

Introduction

Following wildfire, runoff peak and volume have been observed to increase over pre-fire 
conditions (e.g. Robichaud, et al. 2000).  Likewise, sediment discharge and sedimentation 
rates have been observed to increase.   Therefore, runoff in post-fire conditions has the 
potential for downstream flooding and sedimentation that can degrade reservoirs used for 
drinking water supplies. For these reasons, the Burned Area Emergency Response 
(BAER) teams primarily address rehabilitation efforts to reduce runoff and erosion.

Some of the physical changes following fire that have been identified to contribute to 
changes in hydrologic response include (DeBano et al. 1998): 
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o removal of canopy cover, which decreases interception of rainfall and increases 
the portion of the rainfall that hits the ground, and eliminates the buffering effect 
of canopy on rainfall intensity,  which is an important effect in the desert 
southwest subject to convective rainstorms,

o collapse of soil structure and consequent reduction of soil porosity, 
o creation of hydrophobic soils which can reduce infiltration rates, 
o creation of ash residues that can clog pores, thus resulting in decreased infiltration 

rates, 
o removal of ground cover, which exposes soil, allowing sediment to be entrained 

by raindrop impact, reduces roughness and allows runoff to move more rapidly 
downslope, which reduces the time water is ponded on the hillslope and allowed 
to infiltrate, and produces higher runoff rates and flows with higher sediment 
concentration and transport capacity.

Observations show that these physical changes cause a major change in observed runoff 
volume, peak and sediment yield in the southwestern United States.  Robichaud et al. 
(2000) summarized the available data on changes in runoff and erosion following fire.  
The increase in annual water yield following fire in southwestern conifer forests has been 
observed to be a factor of two or less.  In contrast, southwestern conifer watersheds have 
been shown to experience a five to 100 fold increase in post-fire runoff peak flows 
(Anderson et al. 1976).  Pre-fire sediment-yield on burned conifer forest watersheds in 
the southwest is almost too-small to measure (0.0003 t/ha: DeBano et al. 1996).  
However, post-fire sediment-yield on these watersheds has been measured to be some of 
the highest ever measured at 370 t/ha (Hendricks and Johnson, 1944), though it has also 
been observed to be only 1.6 t/ha in one study on a high severity burn (DeBano et al. 
1996).   These large differences indicate that post-fire erosion rates are highly variable, 
but can be extremely high.

The Automated Geospatial Watershed Assessment tool

BAER teams must predict the potential impact of fire on runoff and erosion in order to 
target vulnerable locations for remediation. The USDA-ARS Southwest Watershed 
Research Center, in cooperation with the U.S. EPA Office of Research and Development, 
has developed a geographic information system (GIS) tool to facilitate this process.  The 
Automated Geospatial Watershed Assessment tool (AGWA 
www.tucson.ars.ag.gov/agwa/) uses widely available standardized spatial datasets that 
can be obtained via the internet. The data are used to develop input parameter files for 
two watershed runoff and erosion models: KINEROS2 (www.tucson.ars.ag.gov/kineros) 
and SWAT (www.brc.tamus.edu/swat).  More details about AGWA and the two 
hydrologic models are described in a companion paper (Goodrich et al. this volume) that 
includes an application of AGWA to post-fire runoff assessment.

The SWAT model (Arnold et al. 1994) calculates runoff volume using the SCS Curve 
Number method (USDA 1986) and runoff peak using the rational formula.  Previous 
attempts to use a unit hydrograph approach have been unable to accurately estimate post-
fire runoff peaks without overestimating runoff volume (McLin et al 2001).
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KINEROS2 (Smith et al. 1995; Smith and Quinton 2000), is a distributed runoff-erosion 
model based on Hortonian overland flow theory, and, therefore, is well-suited to 
describing the hydrodynamics of runoff and erosion processes on burned southwestern 
watersheds, where infiltration rates are low and rainfall is infrequent but intense.  Runoff 
is described with a one-dimensional continuity equation applicable to both overland and 
channel flow:  Sediment entrainment and transport on hillslopes and channels is treated 
as an unsteady, one-dimensional convective transport phenomenon, using a continuity 
equation similar to that for runoff.  Sediment flux on a hillslope has two independent 
sources, raindrop-induced entrainment and flow-induced entrainment.  Sediment 
transport for up to five independent particle sizes is described using the Engelund and 
Hansen (1967) total load equation.

Objective

The objective of this study is to determine how model inputs to the KINEROS2 and 
SWAT models need to be modified to account for post-fire conditions.

Methods

Site Descriptions

Data for this study comes from two burned conifer watersheds in the mountains of the 
southwest United States; the Marshall Gulch station which drains 830 ha in Pima County, 
AZ burned by the Aspen Fire in June 2003; and the Starmer Canyon watershed, a 212 ha.  
watershed draining into Pajarito Canyon in Los Alamos County, NM burned during the 
2000 Cerro Grande Fire.   A separate paper in this proceedings more thoroughly 
describes the Starmer Canyon dataset (Springer and Hawkins this issue); previous model 
calibration using Starmer Canyon data are also described by McLin et al. (2001).  

Historical data exist for the Marshall Gulch site from 1951 to 1959.  Following the fire, 
the gauge was reestablished. Because rainfall and runoff data are rarely available from 
burned watersheds for before and after a fire, the Marshall Gulch data offers an 
opportunity to examine changes in runoff peak and volume following fire.   Currently, 
rainfall data is recorded at three different gauging stations on or near the watershed.  
However, during the 1950s, rainfall was collected at only one location on the watershed.  
The burn upstream of the Marshall Gulch station was spotty.  Most of the watershed was 
burned, but high, moderate and low severity burns were observed (Figure 4 in Goodrich 
et al. this volume).  Soils on the watershed are sandy loam developed in weathered 
granite bedrock.

Curve Number and Peak Runoff to Average Runoff Calculation for Marshall Gulch

Using these data from Marshall Gulch, rainfall and runoff pairs were selected from the 
1950s and after the fire.  Curve Numbers were calculated from these data using the 
methods of Hawkins (1993). Furthermore, Hawkins (2004 pers. comm.) has suggested 



plotting peak discharge rate (Qpeak) vs average discharge rate for the event (Qavg) 
(calculated by dividing runoff volume by time of base of the hydrograph) for each storm, 
because a consistent ratio between these two is often observed, and this ratio may provide 
insights into changes in runoff response.

Calibration of KINEROS2 at Starmer Canyon

At Starmer Canyon, the KINEROS2 model was parameterized using the AGWA tool, 
and an optimal parameter set was selected by calibrating the observed discharge rate with 
the simulated discharge rate for each storm.  The USGS 10m DEM was used in AGWA 
to delineate the watershed.  Default cover values derived from the National Land Cover 
Dataset (NLCD) and the STATSGO soils database. Erosion parameters were selected by 
AGWA for KINEROS2, based on USDA soil classification and empirical relationships 
developed from the USLE soil erodibility factor (Woolhiser et al, 1990).  The only 
change in initial parameterization to account for fire was to decrease the canopy cover 
values selected in AGWA by an order of magnitude from 0.5 to 0.05.  

Optimal parameter values were selected for saturated hydraulic conductivity (Ks), 
Manning roughness in the channel (n Ch) and Manning’s roughness on the hillslope (n 
HS) using the SCEUA (Duan et al 1992).   Methods used to calibrate KINEROS2 using 
SECEUA are described in Canfield and Lopes (2004).  The objective function maximized 
the Nash Sutcliffe (1970) statistic calculated using each point along the hydrograph for 
each event.

Results and Discussion

Observed Changes in Peak and Volume at Marshall Gulch, Az

Using rainfall and runoff depths for summer monsoon events that occurred on Marshall 
Gulch during the 1950s and after the fire in 2003 and 2004, Curve Number (CN) values 
were calculated (Hawkins, 1993).  Curve numbers are plotted against rainfall in Figure 1. 

Evaluation of this figure shows that there is no apparent increase in CN in post-fire 
conditions, and therefore no obvious change in runoff volume production in post-fire 
conditions.  The lack of clear differences between the CNs in burned and unburned 
situations can be attributed to errors in rainfall and runoff measurement, as well as the 
comparison of data sets separated in time by forty years.  However, the trends support the 
findings of Springer and Hawkins (this volume), which show small change in post-fire 
Curve Numbers at Starmer Canyon, and increasingly declining CNs with rainfall, 
indicative of the ‘complacent’ watershed response (Hawkins, 1993).  Such ‘complacent’ 
behavior indicates that a single CN may be inappropriate for estimating runoff volume in 
forested conditions either before or after the fire.
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Figure 1 – Calculation of Curve Numbers before and After the 
Marshall Gulch Fire
Figure 2 – Peak Discharge plotted against Average Discharge 
for Before and After the Marshall Gulch Fire

lume and CN estimates suggest little change in runoff following the fire at 
lch, a clear change can be observed in the hydrograph peaks and hydrograph 
Review of the data show that following a rainfall event in the 1950s, a runoff 
continue for several days.  However, following the fire, the time of base often 
er than a few hours.  Hawkins (2004 pers. comm.) has suggested plotting 
vg. Using this method a clear change can be seen as shown in Figure 2. 
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are different, which suggests the hydrograph generation mechanisms may have changed 
producing a hydrograph of a different shape.  

Evaluation of the peak and volume data from Marshall Gulch shows a relatively large 
change in peak runoff and relatively little change in runoff volume.  This finding is 
consistent with the observations of Anderson et al. (1976) and Robichaud et al. (2000).  
Therefore, analysis of this data set suggests that post-fire prediction tools must be 
modified to produce much higher post-fire runoff peaks, without a commensurate 
increase in predicted runoff volume.

KINEROS2 Modeling at Starmer Canyon

The available rainfall and runoff data were used to select optimal model parameter 
estimates for the KINEROS2 model at Starmer Canyon.  The optimized model fit is 
summarized in Table 1.  While data are available for more events, only hydrographs that 
could be modeled well (as determined by a Nash-Suttcliffe statistic greater than 0.7) 
using KINEROS2 were used in this analysis.   The fact that some events could not be 
modeled well may be attributed to errors in rainfall and runoff measurement.

Table 1 – Optimal Parameter Values for Selected Events at Starmer Canyon

Event
Rainfall 

Depth (mm)
Days Since 

Fire Ks (mm/hr) n Channnel n Hillslope
Nash-

Sutcliffe
6/28/2000 11.3 37 3.361 0.193 0.014 0.89
7/9/2000 14.3 48 0.390 0.013 0.213 0.74
10/22/2000a 14.1 154 1.183 0.151 0.430 0.85
10/22/2000b 12.3 154 0.866 0.150 0.087 0.85
8/9/2001 9.8 444 2.172 0.008 0.716 0.88
7/14/2002 9.8 783 3.312 0.041 1.175 0.95
8/11/2003 22.6 1176 7.540 0.117 1.053 0.90
The poorest fit hydrograph (7/9/00) used in this simulation is shown in Figure 3.
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Figure 3 – Comparison of Observed and Simulated Hydrograph
for the Poorest fit Hydrograph Used in the Analysis at Starmer 



Using these data, an interesting trend is observed in optimal hillslope roughness (Figure 
4). For the first event, the optimal hillslope roughness was 0.014, which is very close to 
the value of 0.011 recommended for bare soil by Engman (1986).  For the last event the 
optimal hillslope roughness value is 1.05, which does not differ greatly from the value of 
0.8 for wooded conditions recommended by Engman.

The trend of increasing hillslope roughness over time is to be expected because 
vegetation will begin to grow.  In addition, soil compaction will be reduced by the 
development of a root system and processes such as freeze-thaw, which can further 
increase the porosity in the soil.  The effects of these changes can also be observed in the 
changes in the optimal saturated hydraulic conductivity (Ks) over time as shown in 
Figure 5. 
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Figure 4 – Optimal Hillslope Roughness for Events that Occurred after 
the Cerro Grande Fire at Starmer Canyon Plotted vs Time

Figure 5 – Optimal Hillslope Hydraulic Conductivity Following the 
Cerro Grande Fire at Starmer Canyon Plotted vs. Time



Simulated Changes in Runoff Peak as a Result of Changes in Roughness 

Of the three parameters optimized, the modeled peak runoff predictions are most 
sensitive to hillslope roughness.  Figure 6 shows how changes in hillslope roughness can 
impact runoff peak for a 95 m long hillslope in Starmer Canyon subject to an 11 mm 
rainfall event with a peak 15-minute intensity of 19.7 mm/hr.   In this case, a change from 
bare to forested roughness results in a six-fold change in runoff peak and a three-fold 
change in runoff volume.  
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Runoff on bare soil is often assumed to produce Hortonian overland flow, which is the 
runoff mechanism described in KINEROS2.  While Engman (1986) has determined a 
roughness value for forested conditions that can be used to estimate hillslope roughness 
under Hortonian conditions, runoff in forested watersheds is generally thought to be 
dominated by subsurface storm flow and return flow (Dunne and Leopold, 1978), 
conditions not simulated in KINEROS2.  Furthermore, with highest roughness rates (n= 
0.75 and 1.5) the Hortonian processes simulated in KINEROS2 may produce instability 
on the recessional limb of the hydrograph at low flow rates (Figure 6). Therefore, while 
KINEROS2 may provide a reasonable description of runoff for post-fire conditions, it 
does not simulate the processes generally assumed to produce runoff in pre-fire 
conditions or in fully recovered forested watersheds.  These model deficiencies will be 
addressed in future versions of KINEROS2.

By necessity, most simulation models are unable to simulate all processes inherent in 
watershed rainfall-runoff response.  However, they can provide useful approximations.  
While KINEROS2 does not describe the runoff producing processes in forested 
conditions, the erosion from Hortonian overland flow simulated by KINEROS2 should be 
greater than the erosion generated by subsurface storm flow and return flow.  Therefore, 
it can be considered to be a conservatively high value.

Figure 6 – Hillslope Runoff Plotted vs time for DifferentH 
Hillslope Roughness Values



Simulated Impact of Roughness Change on Sediment Discharge at the Base of a Hillslope

Using erosion parameters selected by AGWA for KINEROS2 based on USDA soil 
classification and empirical relationships developed from the USLE soil erodibility factor 
(Woolhiser et al, 1990), the impact of hillslope roughness on erosion can be illustrated in 
Figure 7.  
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Since erosion parameters are unchanged in these simulations, and sediment entrainment 
by raindrop impact should be relatively unchanged, the simulated change in sediment 
discharge rates can be attributed to the change in sediment transport associated with the 
increased flow rates that occur on hillslopes with lower roughness. 

Comparison of the hillslope runoff and hillslope sediment delivery show that hillslope 
roughness has a relatively greater increase in sediment delivery as indicated in Figure 8. 
This example shows a two-fold decrease in runoff volume from bare to wooded 
conditions.  As mentioned previously, there was a six-fold change in peak runoff rate 
from bare to wooded conditions.  However, the factor of twenty decrease in sediment 
delivered from the hillslope to the channel indicates that for this simulation, sediment is 
more sensitive to this change in roughness than either runoff peak or runoff volume.  
Furthermore, the unburned estimates are likely to be high because KINEROS2 describes 
Hortonian overland flow for unburned conditions when subsurface storm flow and return 
flow are likely to be more appropriate. Therefore, the relative change estimate may be 
low.

Figure 7 – Hillslope Sediment Discharge Plotted vs Time for 
Different Hhillslope Roughness Values
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Conclusions

This study shows that peak runoff rates in post-fire conditions can be several hundred 
percent greater than pre-fire conditions, and that modeled peak discharge and sediment 
delivery are strongly dependent on hillslope roughness.  Optimal parameter sets for of a 
series of events at the Starmer Canyon watershed suggest an increase in hillslope 
roughness from bare conditions after the fire to hillslope roughness similar to wooded 
conditions three years later, which is consistent with watershed recovery.  The fact that 
these roughness values are consistent with independent estimates for these values for 
these conditions suggests that the KINEROS2 model may provide useful estimates of 
relative change in peak runoff when physically-realistic values of roughness are used.  
Therefore, initial post-fire roughness will need to be reduced to bare, or near bare 
conditions to produce realistic estimates of runoff peak.

This and other studies have found that observed changes in runoff volume following fire 
are less pronounced than the changes in peak runoff rates on forested watersheds.   
Unfortunately, change analysis is hampered by a lack of pre-fire data on burned 
watersheds.  At Marshall Gulch, data from before and after the Aspen fire supported the 
findings of Springer and Hawkins (this volume) that showed limited change in runoff 
volume and a watershed with ‘complacent’ behavior whereby CN values increase with 
increasing rainfall rates.  An accompanying paper, Goodrich et al (this volume), suggests 
some possible Curve Number values for post-fire conditions based on changes in cover 
that result in smaller changes in CNs than are currently selected by experience.

Large changes were observed in discharge rates following the Aspen Fire at Marshall 
Gulch. Furthermore, the fact that the ratio of runoff peak to runoff average was observed 
to change from 3.6 pre-fire to 4.9 after the fire suggests that the runoff generating 
mechanisms at Marshall Gulch have been changed by the fire.  

Figure 8 – Hillslope Sediment Delivery and Runoff Volume 
Plotted vs hillslope roughness values



While KINEROS2 is not structured to simulate the runoff processes observed in heavily 
forested conditions, the erosion estimated by simulating Hortonian overland flow should 
provide an estimate that would be higher than the hillslope erosion that would occur as a 
result of subsurface storm flow and return flow under forested conditions.  

One area requiring further study is the change in peak discharge to average ratio noted at 
Marshall Gulch.  What physical processes control this ratio and why should they change 
in post-fire conditions? Another area needing further investigation is an analysis of the 
geometric partitioning effect on runoff peak and sediment discharge. Studies indicate that 
there can be scale dependence under some conditions (Goodrich, 1990; Canfield and 
Goodrich (in press)). 
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